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Deterministic annealing for density estimation by multivariate normal mixtures

Martin Kloppenburg and Paul Tavan
Institut für Medizinische Optik, Ludwig-Maximilians-Universita¨t München, Theresienstrabe 37, D-80333 Mu¨nchen, Germany

~Received 27 September 1996!

An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for
large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable
expectation-maximization~EM! algorithms. We remove these instabilities by the introduction of soft con-
straints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically
stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM
procedures.@S1063-651X~97!50803-8#

PACS number~s!: 02.50.2r, 07.05.Mh, 02.60.Pn, 89.70.1c
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I. INTRODUCTION

The identification of principal structures and featur
within large sets of high-dimensional data and the genera
of simplified models for such data distributions are import
tasks, which arise in many technical fields including patt
recognition @1# or the study of complex physical system
e.g. protein dynamics@2#. However, the design of math
ematical methods, which are capable of solving these ta
remains a problem with many pitfalls despite the consid
able attention which it has received over the last deca
Various approaches have been proposed@1#, among which
density estimation is a most important one, as it rests
fundamental statistical notions. That method aims at rep
senting the data by a model probability density and requ
adjustment of a parameter set; usually mixtures of multiv
ate normal distributions are chosen as model densities
second important approach is clustering; here, data points
grouped into clusters or classes, which are represented
prototypical member, e.g., by their centroid. More recen
artificial neural networks have also been shown to qualify
possible tools, since they can perform tasks like clustering
the extraction of principal components@3#.

Usually the task of finding dimension-reduced descr
tions of high-dimensional data sets is formulated in terms
optimization of a cost function, and iterative gradient-bas
algorithms are applied. For density estimation, the likeliho
to draw the given data sample from the model density is s
a function@1,4#. In clustering, the error associated with th
representation of the data points by their corresponding
totypes is a suitable choice@1,5#; also learning rules of neura
networks frequently have been obtained from related c
functions @6#. Note, however, that there are some biolo
cally inspired neural learning algorithms, which succeed
determine useful descriptions despite the fact that cost fu
tions or other formal quality criteria are lacking@7,8#.

All quoted cost functions have a common drawback: g
erally they are not convex and the search for their glo
optimum is highly difficult; therefore, iterative gradien
based algorithms get easily caught in local extrema. In or
to avoid this difficulty, annealing strategies derived from s
tistical mechanics concepts have been successfully app
@9,10#. Here, the cost function is conceived of as the ene
of an analog physical system, and the optimization proces
551063-651X/97/55~3!/2089~4!/$10.00
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mapped to the ongoing relaxation of a canonical ensem
towards thermal equilibrium at decreasing temperatures.
a result, at finite temperatures, the original corrugated c
function is effectively replaced by a new and smoother o
representing an analog free energy. Both detailed simula
annealing procedures, which safely but slowly conve
@11,12#, and mean-field type deterministic annealing me
ods @10,13#, which are faster but may lead to suboptim
solutions@14,15#, have been used.

Taking the socalled ‘‘elastic net’’ algorithm as a prot
typical example@16#, Yuille, Stolorz, and Utans have re
cently elaborated the close connection between a special
of density estimation and the deterministic annealing
proach to clustering@17#. Extending that type of reasoning
in this paper we will derive a class of algorithms which sol
the general problem of density estimation by multivaria
normal mixtures and avoid the hitherto inevitable difficulti
of singular solutions@1#. That progress will be achieved b
identifying and combining the respective advantages of t
mutually interconnected approaches. To present our a
ments, we will first state the task to be solved from the cl
sical statistical point of view and then sketch its relations
clustering procedures derived from statistical mechanics a
logs. This discussion serves to motivate our algorithmic p
cedures, which will be presented and subsequently illustra
using a simple example.

II. DENSITY ESTIMATION FOR NORMAL MIXTURES

Consider a set of D-dimensional data X5$xnun
51, . . . ,N%,RD, which is to be represented by a mod
density

p~xuQ!5(
r51

K

Prp~xur ,u r !, ~1!

composed ofK multivariate normal distributions

p~xur ,u r !5
exp@2~x2yr !

t ( r
21~x2yr !/2#

~2p!d/2~detS r !
1/2 . ~2!
R2089 © 1997 The American Physical Society
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The set of adjustable parametersQ includes the statistica
weightsPr , the meansyr , and the covariance matricesS r of
the normal distributionsr .

The logarithm of thelikelihood P(XuQ) that the sample
X is drawn from this density is

l ~XuQ!5 (
n51

N

ln p~xnuQ!. ~3!

In the classical statistics approach one tries to obtain suit
parametersQ by maximizing the log-likelihoodl (XuQ).
Taking derivatives of Eq.~3! one finds a set of necessa
conditions for the optimal parameters@1#. For a most simple
specification of these conditions we introduce the Bayes
conditional probability

P~r uxn ,Q!5
Prp~xnur ,u r !
p~xnuQ!

, ~4!

that the data pointxn is generated by the normal distributio
r , and the global expectation value^ . . . & of the probability

^P~r ux,Q!&5
1

N(
n51

N

P~r uxn ,Q!, ~5!

that a data point is due tor . Then one can define local ex
pectation values for classesr by

^ f ~x!& r ,Q5^P~r ux,Q! f ~x!&/^P~r ux,Q!&, ~6!

and the stationarity conditions for the parameters read

Pr5^P~r ux,Q!&, ~7!

yr5^x& r ,Q , ~8!

S r5Cr ,Q , ~9!

whereCr ,Q[^(x2yr)(x2yr)
t& r ,Q are ther -local covariance

matrices.
In order to determine a set of parametersQ satisfying

these conditions one can apply the so-called expectat
maximization~EM! algorithm @4#. Starting with some initial
estimates of the parameters, one first calculates the co
tional probabilities~4! and subsequently uses Eqs.~5!–~9!
for an iterative update of the estimates until self-consiste
is reached. Generally one finds, that the results strongly
pend on the choice of the initial estimates, represent sub
timal solutions, and are frequently even singular, i.e.,
some of the normal distributions the ranges detS r or the
statistical weightsPr become very small, whereas for othe
they become very large. These findings signify the cor
gated structure of the log-likelihood functional within param
eter space and testify, that a naive application of the
algorithm is inadequate.

Unfortunately, the statistical approach sketched ab
does not provide any clues as to how one can systematic
avoid convergence towards suboptimal solutions, e.g.,
imposing suitable constraints on the variation of the
rameters. In contrast, such clues naturally show up if
considers the seemingly unrelated clustering problem fr
le
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the point of view of an appropriate physical analog, whi
allows analysis in terms of statistical mechanics conce
@10#.

III. STATISTICAL MECHANICS AND CLUSTERING

In clustering a given data sampleX is to be represented
by a codebook(Y,V), such that a suitable error functiona
U(Y,V) becomes minimal. Here, the codebook consists o
set of K prototypes,Y5$yr%,RD, and of a set ofN3K
binary variables,V5$vnrP$0,1%%, which associate each dat
point xn to exactly one codebook vectoryr . Chosing as an
error measure the squared distance within data space
total error for the representation of the sampleX by the code-
book (Y,V) is

U~Y,V!5 (
n51

N

(
r51

K

vnr~xn2yr !
2. ~10!

At given V the optimal yr are the centroidsyr
5(nvnrxn /(n8vn8r . However, concerning the choice ofV
the clustering problem stated above is a hard, so-calledNP-
complete optimization problem@18#. To tackle that problem
one may interpretU(Y,V) as theenergy of an analog physi-
cal system with dynamical variablesyr andvnr ; considering
a canonical ensembleof such systems with microstate
(Y,V), i.e., maximizing the entropy under the constraint o
given average energyŪ one obtains the partition function

Z5E exp@2bF̃~Y!#dDKy, ~11!

where

F̃~Y!52
1

b (
n51

N

lnS (
r51

K

exp@2b~xn2yr !
2# D . ~12!

Since the partition function~11! is not easily calculated, one
applies the mean-field approximation, within which the in
gral is replaced by the maximum of its integrand assum
that the latter is strongly peaked. The corresponding m
mum of F̃(Y), which is the mean-field free energy, is dete
mined by solving the saddle point equations for the ensem
expectation valuesP(r uxn ,b)[ v̄nr andyr of the dynamical
variables. The saddle point equations are

yr5
(
n51

N

P~r uxn ,b!xn

(
n51

N

P~r uxn ,b!

~13!

and

P~r uxn ,b!5
exp@2b~xn2yr !

2#

(
r 851

K

exp@2b~xn2yr !
2#

. ~14!

These equations are intimately related to some of the
pressions presented earlier for the maximum likelihood e
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55 R2091DETERMINISTIC ANNEALING FOR DENSITY . . .
mation by normal mixtures. For instance, the stationa
conditions ~8! for the yr exactly reduce to the mean-fiel
centroid conditions~13! in the special case ofunivariate
normal distributions with identical statistical weights a
variances, i.e., ifPr51/K andS r

2152b1 @cf. Eqs.~1!, ~2!,
~6!#. Similarly the expressions~4! for the Bayesian condi-
tional probabilities P(r uxn ,Q) reduce to the mean-field
equations ~14! for the ensemble expectation valu
P(r uxn ,b) of the association variablesvnr . Furthermore,
concerning the dependence on theyr the log-likelihood~3! is
equivalent to the free energy~12! and, with respect to thes
parameters, maximizing the log-likelihood amounts to mi
mizing the free energy. Thus free energy clustering is a s
cial case of maximum likelihood density estimation.

Note however, that the classical statistics approach p
vides an optimality criterion for the variances2 of the
univariate normal distributions; in that case conditions~9!
reduce tos25(1/DK)( r^(x2yr)

2& r ,Q . No such criterion is
obtained in free energy clustering. Here, the varian
s251/2b is a global parameter measuring the temperatur
the physical analog system.

Now it might seem, that the restriction of the model de
sity to a mixture of univariate normal distributions with ide
tical weigths and variances, as well as the absence of a
scription for an optimal choice ofs2 , represent distinct
disadvantages of the free energy approach. But~i! the reduc-
tion of the parameter set to theyr and~ii ! the use ofs2 as a
fixed steering parameter actually generate its main adv
tage, i.e., a stable algorithmic scheme: Constraining the
rametersS r andPr to predefined values excludes nasty s
gular solutions. Furthermore, the interpretation of 2s2 as a
temperature leads to aannealing schemefor the optimization
procedure upon which the emerging solutions becomeinde-
pendentof the initial conditions. The properties of this an
nealing process, which involves a hierarchically ordered
ries of data representations at increasing resolutions, h
been analyzed in detail by various authors@10,15#. Although
the solutions obtained at small or vanishings do not neces-
sarily represent the global optimum ofF̃(Y) or U(Y,V), re-
spectively, they usually are quite satisfactory~for a modified
and more safely converging algorithm see Ref.@15#!.

The above analysis of the sources of algorithmic stabi
in maximum likelihood density estimation by univaria
normal mixtures, i.e., in free energy clustering, has inspi
us to develop related algorithmic procedures also for
more general multivariate case. Here, the rigid constraints
the parametersS r andPr will be replaced by soft ones, suc
that the possibility to define an annealing procedure is p
served.

IV. ANNEALING SCHEMES FOR MULTIVARIATE
GAUSSIAN MIXTURES

In order to impose suitable soft constraints on the cov
ance matricesS r we represent them in terms of their eige
vectorswir and eigenvaluess ir

2 . Then the inverse matrice
S r

21 can be expressed in terms of the orthogonal diagona
ing transformationsWr5(w1r , . . . ,wdr) and of the diagona

matricesŜ r of eigenvalues as
y
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S r
215WrŜ r

21Wr
t . ~15!

Using this representation ofS r
21 for maximization of the

log-likelihood ~3! and extending that cost function by cond
tions, which guarantee the normalization of the eigenvec
wir , the stationarity conditions~9! separate into two sets o
equations. According to the first set

s ir
2 5wir

t Cr ,Qwir ~16!

the s ir
2 should be ther -local variances in the direction

wir , whereas according to the second set

s ir
2wir5Cr ,Qwir , ~17!

thewir should be the eigenvectors of ther -local covariance
matricesCr ,Q .

Now the stationarity conditions~16! for the eigenvalues
s ir
2 enable to add the desired constraints. A possible choic

s ir
2 5wir

t Cr ,Qwir1m~s22s ir
2 !/^P~r ux,Q!&. ~18!

Here, thes ir
2 are coupled to an annealing parameters2 and

m determines the rigidity of coupling. Note, that the co
straints can be derived by adding the regularization te

V(Ŝ r ;s)52(m/2)( r ,i(lnsir
21s2/sir

2), which has a quadratic
maximum ats ir5s, to the log-likelihood~3!. Thus, in the
strong coupling limit (m→`) free energy clustering is re
covered.

FIG. 1. Annealing of a normal mixture withK510 bivari-
ate components for a two-dimensional data set; 1000 data po
are drawn~black pixels!; the crosses measure the ranges 2s ri of
the component densities in directionswri ; thin lines indicate
fuzzy boundaries, at which the association probabilities~4! to
the corresponding mixture components have the value 1/2;~a! ini-
tial state at annealing parameters (s,m,l)5(1.1s0,0.5,1.0); ~b!
(0.65s0,0.5,1.0); ~c! (0.32s0,0.5,1.0); ~d! final state
(0.32s0,0.0,0.0).
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R2092 55MARTIN KLOPPENBURG AND PAUL TAVAN
Applying the EM algorithm we use Eqs.~17! and~18! for
an iterative parameter update and assure the required
thogonality of the vectorswir hierarchically by Schmidt’s
method. Vectorw1r then converges to the eigenvector
Cr ,Q with the largest eigenvalue,w2r to one with the second
largest, etc.~for the mathematics of that type of diagonaliz
tion of covariance matrices see, e.g., Ref.@19#!.

In contrast to the case of theS r , introduction of soft
constraints for the weightsPr is trivial. One may simply
replace the EM equations~7! by

Pr5^P~r ux,Q!&1l~1/K2Pr ! ~19!

in order to keep the weights of the local distributions a
proximately balanced at 1/K. Like in free energy clustering
that balance ensures the stability of the algorithm. Note,
the constraint derives from adding the log-likelihoo
( r(1/K)lnPr , that thePr are uniformly distributed, weighted
by l to the original log-likelihoodl (XuQ).

The annealing schedule, which accompanies the
parameter update according to Eqs.~8!, ~17!, ~18!, and~19!
in our algorithm, involves a reduction of the parameters
from large to small values and a subsequent or concom
lifting of constraints by decreasingm and l to zero. The
progress of optimization is monitored by the value
l ~XuQ,s,m,l!. A sequential, stochastic version of the alg
rithm, in which data points are presented one by one
parameter optimization, has also been implemented and
following simple example has actually been computed us
that version.
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V. EXAMPLE

Figures 1 illustrate the annealing process and the co
sponding dimension-reduced descriptions for a simple tw
dimensional data setX composed ofN5500 000 data points
with a maximal variances0. That data set is distributed ac
cording to ana priori mixture density composed of eigh
bivariate Gaussians; the weights of two of the data clus
@marked by arrows in Fig. 1~a!# have been chosen 1.5 time
larger than those of the other clusters. For our model den
~1! we have chosenK510 components. The annealing
initialized at a high temperature (s51.1s0); as shown in
Fig. 1~a! all components are degenerate at the center of
data distribution and the description represents that of a
bal principal component analysis@1#. Lowering the tempera-
ture leads to a splitting into three@Fig. 1~b!# and, subse-
quently, five components@Fig. 1~c!#, which are still
degenerate; that process uncovers the hierarchical dist
relations among the clusters of the data set. Finally, for F
1~d! the constraints on the variances and weights have b
removed at constant temperature; as a result, the subs
tures within the three small data clusters become resolve
a lifting of the corresponding degeneracies whereas the
herence of the extended clusters~marked by arrows! is re-
tained by preservation of~twofold! degeneracy. The result
ing model density represents the optimal solution with ei
effective components of correct covariances and weig
Note, that the thin lines in the figures illustrate the respect
fuzzy partitionsP(r ux,Q) of the data set.
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