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Deterministic annealing for density estimation by multivariate normal mixtures
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An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for
large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable
expectation-maximizatiodEM) algorithms. We remove these instabilities by the introduction of soft con-
straints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically
stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM
procedures[S1063-651X97)50803-9

PACS numbe(s): 02.50-r, 07.05.Mh, 02.60.Pn, 89.76c

I. INTRODUCTION mapped to the ongoing relaxation of a canonical ensemble
towards thermal equilibrium at decreasing temperatures. As
The identification of principal structures and featuresa result, at finite temperatures, the original corrugated cost
within large sets of high-dimensional data and the generatioftinction is effectively replaced by a new and smoother one
of simplified models for such data distributions are important€presenting an analog free energy. Both detailed simulated
tasks, which arise in many technical fields including patterr@nnealing procedures, which safely but slowly converge
recognition[1] or the study of complex physical systems, [11,12, and mean-field type deterministic annealing meth-
e.g. protein dynamic$2]. However, the design of math- 0ds[10,13, which are faster but may lead to suboptimal
ematical methods, which are capable of solving these task§olutions[14,15, have been used. _
remains a problem with many pitfalls despite the consider- Taking the socalled “elastic net” algorithm as a proto-
able attention which it has received over the last decadedypical example[16], Yuille, Stolorz, and Utans have re-
Various approaches have been propokEd among which cently elaborated the close connection between a special case
density estimation is a most important one, as it rests o®f density estimation and the deterministic annealing ap-
fundamental statistical notions. That method aims at repreProach to clustering17]. Extending that type of reasoning,
senting the data by a model probability density and required) this paper we will derive a class of algorithms which solve
adjustment of a parameter set; usually mixtures of multivarithe general problem of density estimation by multivariate
ate norma' distributions are Chosen as mode' densities_ )Slormal miXtUres and aVOid the hitherto ineVitabIe dIffICU|tIeS
second important approach is clustering; here, data points aff singular solutiong1]. That progress will be achieved by
grouped into clusters or classes, which are represented byi@entifying and combining the respective advantages of two
prototypical member, e.g., by their centroid. More recently,Mutually interconnected approaches. To present our argu-
artificial neural networks have also been shown to qualify agnents, we will first state the task to be solved from the clas-
possib|e tools, since they can perform tasks like C|ustering 0$ica| statistical pOint of view and then sketch its relations to
the extraction of principal componer3]. clustering procedures derived from statistical mechanics ana-
Usually the task of finding dimension-reduced descrip-09s. This discussion serves to motivate our algorithmic pro-
tions of high-dimensional data sets is formulated in terms ofedures, which will be presented and subsequently illustrated
optimization of a cost function, and iterative gradient-based/sing a simple example.
algorithms are applied. For density estimation, the likelihood
to draw the given data sample from the model density is such
a function[1,4]. In clustering, the error associated with the !l DENSITY ESTIMATION FOR NORMAL MIXTURES
representation of the data points by their corresponding pro- ~gnsider
totypes is a suitable choi¢#,5]; also Iea_rnlng rules of neural =1,... NJCRP, which is to be represented by a model
networks frequently have been obtained from related Cos&ensity
functions[6]. Note, however, that there are some biologi-
cally inspired neural learning algorithms, which succeed to
determine useful descriptions despite the fact that cost func- K
tions or other formal quality criteria are lackihd,8]. p(X|©)=2, P,p(Xr,6,), (@)
All quoted cost functions have a common drawback: gen- r=1
erally they are not convex and the search for their global
optimum is highly difficult; therefore, iterative gradient-
based algorithms get easily caught in local extrema. In ordef
to avoid this difficulty, annealing strategies derived from sta-
tistical mechanics concepts have been successfully applied t <1
[9,10]. Here, the cost function is conceived of as the energy p(X|r,0,)= EXF[—(X—)(/;/Z 2 (xlgyr)IZ] )
of an analog physical system, and the optimization process is o (2m)“4(dek,)

a set ofD-dimensional data X={x,|n

omposed oK multivariate normal distributions
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The set of adjustable parametddsincludes the statistical the point of view of an appropriate physical analog, which
weightsP, , the meany, , and the covariance matrics of  allows analysis in terms of statistical mechanics concepts
the normal distributions. [10].

The logarithm of thdikelihood P(A]®) that the sample

X is drawn from this density is Il. STATISTICAL MECHANICS AND CLUSTERING

N In clustering a given data sampleis to be represented

[(XO)= E INp(Xn|O). (3 by a codebook()),V), such that a suitable error functional
n=1 U(),V) becomes minimal. Here, the codebook consists of a

et of K prototypes,V={y,} CRP, and of a set ofNxK
binary variablesy={v,,€{0,1}}, which associate each data
point x,, to exactly one codebook vectgy. Chosing as an
error measure the squared distance within data space, the
ﬁotal error for the representation of the sampilby the code-
book (V,V) is

In the classical statistics approach one tries to obtain suitab
parameters® by maximizing the log-likelihoodl (X]®).
Taking derivatives of Eq(3) one finds a set of necessary
conditions for the optimal parametdil|. For a most simple
specification of these conditions we introduce the Bayesial
conditional probability

N K

4) UQWV=2 2 vn(a—Y)? (10)

n=1r=1

P.p(X|r, 6;)
P(rxn, ©) p(X|©)
that the data poink, is generated by the normal distribution ~ At given V the optimal y, are the centroidsy,

r, and the global expectation valge . .) of the probability =~ =ZnvnX,/Zn vy, . However, concerning the choice f
the clustering problem stated above is a hard, so-called
1 N complete optimization problefil8]. To tackle that problem
X,0))= NZ P(r|%n,®), (5 one may interpret) (),V) as theenergy of an analog physi-
n=t cal system with dynamical variablgs andv,, ; considering
a canonical ensembleof such systems with microstates
(Y,V), i.e., maximizing the entropy under the constraint of a

given average energy one obtains the partition function

(P(r

that a data point is due to. Then one can define local ex-
pectation values for classesby

(F))r,0=(P(r[x,0)f(x))/(P(r|x,0)), (6)

_ _aF DK
and the stationarity conditions for the parameters read 2= j exf = BE) ]y, v
P, =(P(r|x,0)), (7)  where
~ g _ 1 N K
Yr={X)r.0 (8) F)=—= >, |n<2 exd — B(x,—y)?l]. (12
n=1 r=1
Er::C,ﬁ,, (9)

Since the partition functiofill) is not easily calculated, one
whereC, o=((x—¥;)(Xx—¥)") o are ther-local covariance applies the mean-field approximation, within which the inte-
matrices. gral is replaced by the maximum of its integrand assuming

In order to determine a set of paramet@ssatisfying  that the latter is strongly peaked. The corresponding mini-
these conditions one can apply the so-called expectationnym of F()), which is the mean-field free energy, is deter-
maximizatiofEM) algorithm[4]. Starting with some initial  mined by solving the saddle point equations for the ensemble
estimates of the parameters, one first calculates the condiypectation value®(r|x,,8)=uv,, andy, of the dynamical

tional probabilities(4) and subsequently uses EdS5)—(9)  yariables. The saddle point equations are
for an iterative update of the estimates until self-consistency

is reached. Generally one finds, that the results strongly de- N
pend on the choice of the initial estimates, represent subop- P(r|X,,B8)X,
timal solutions, and are frequently even singular, i.e., for gt (13)
some of the normal distributions the ranges3debr the Yr N
statistical weight$, become very small, whereas for others > P(rx,.5)
.y L n=1

they become very large. These findings signify the corru-
gated structure of the log-likelihood functional within param-
eter space and testify, that a naive application of the EM
algorithm is inadequate. extd — B(X,—¥,)?]

Unfortunately, the statistical approach sketched above P(r|x,,8)= =«
does not provide any clues as to how one can systematically 2 ext — B(x,— V)2
avoid convergence towards suboptimal solutions, e.g., by iy noer
imposing suitable constraints on the variation of the pa-
rameters. In contrast, such clues naturally show up if one These equations are intimately related to some of the ex-
considers the seemingly unrelated clustering problem fronpressions presented earlier for the maximum likelihood esti-

(14)
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mation by normal mixtures. For instance, the stationarity
conditions (8) for the y, exactly reduce to the mean-field
centroid conditiong(13) in the special case afinivariate
normal distributions with identical statistical weights and
variances, i.e., i, =1/K andEr_l:Z,BJl [cf. Egs.(D), (2),
(6)]. Similarly the expression¢d) for the Bayesian condi-
tional probabilities P(r|x,,®) reduce to the mean-field
equations (14) for the ensemble expectation values
P(r|x,,B8) of the association variables,,. Furthermore,
concerning the dependence on thehe log-likelihood(3) is
equivalent to the free enerdi{2) and, with respect to these
parameters, maximizing the log-likelihood amounts to mini-
mizing the free energy. Thus free energy clustering is a spe-
cial case of maximum likelihood density estimation.

Note however, that the classical statistics approach pro-|-= "
vides an optimality criterion for the variance® of the
univariate normal distributions; in that case conditid8%
reduce too?=(1/DK) =, ((Xx—¥;)?);.¢ - No such criterion is
obtained in free energy clustering. Here, the variance
o?=1/2 is a global parameter measuring the temperature of
the physical analog system.

Now it might seem, that the restriction of the model den- FIG. 1. Annealing of a normal mixture witi=10 bivari-
sity to a mixture of univariate normal distributions with iden- &€ components for a two-dimensional data set; 1000 data points
tical weigths and variances, as well as the absence of a prét€ drawn(black pixelg; the crosses measure the ranges; 2f
scription for an optimal choice ofr?, represent distinct the component densmes. in dlrectlorwsr.i ;.thln I|nes.|.nd|cate
disadvantages of the free energy approach.(Buhe reduc- fuzzy boundan_es, a_t which the association probabilitiés t_o
tion of the parameter set to tlye and(ii) the use ofo? as a :hT c?r:esptondmg T'Xture comgonents}\hivelmlge Voal_)“‘f(g’?“g
fixed steering parameter actually generate its main advart'{;l 6;:%2 1acl)r)1r1ea(|cr)lg p(z?)rzrrzzf %?K{’o)),_((d) O’fiﬁayl ’ )s,t(at)e
tage, i.e., a stable algorithmic scheme: Constraining the pa{b.3200’0'0'0.0)’ SO
rametersS, andP, to predefined values excludes nasty sin--
gular solutions. Furthermore, the interpretation of°2as a . &1
temperature leads toamnealing schemor the optimization S TEWE WL (15)
procedure upon which the emerging solutions becarde-
pendentof the initial conditions. The properties of this an- Using this representation af,* for maximization of the
nealing process, which involves a hierarchically ordered selog-likelihood (3) and extending that cost function by condi-
ries of data representations at increasing resolutions, hav®ns, which guarantee the normalization of the eigenvectors
been analyzed in detail by various authfi8,15. Although  W;, , the stationarity conditioné9) separate into two sets of
the solutions obtained at small or vanishimgio not neces- equations. According to the first set
zggzi\r/ee?resent the global optl_mum 5(32) oru(y,)) . Te o2 =W C W (16)

y, they usually are quite satisfact@figr a modified ir = Wir r,0Wir

and more safely converging algorithm see Ré&Bb]). ) . ) o

The above analysis of the sources of algorithmic stabilitythe i, should be ther-local variances in the directions
in maximum likelihood density estimation by univariate W, Whereas according to the second set
normal mixtures, i.e., in free energy clustering, has inspired )
us to develop related algorithmic procedures also for the i Wir = Cy oWir 17
more general multivariate case. Here, the rigid constraints on ] )
the parameter¥, andP, will be replaced by soft ones, such thew;, should be the eigenvectors of thdocal covariance

that the possibility to define an annealing procedure is pretatricesC, o. . - .
served. Now the stationarity conditionél6) for the eigenvalues

o2 enable to add the desired constraints. A possible choice is

2 2
IV. ANNEALING SCHEMES FOR MULTIVARIATE i =W, Cr Wi + u(0?— o )(P(r[x,0)).  (18)

GAUSSIAN MIXTURES 2 .
Here, thes?, are coupled to an annealing parametérand

In order to impose suitable soft constraints on the covariy, determines the rigidity of coupling. Note, that the con-
ance matricex, we represent them in terms of their eigen- straints can be derived by adding the regularization term
vectorsw;, and eigenvalues? . Then the inverse matrices VS, 0)=—(u/2), (Ino? +66?), which has a quadratic
3, ! can be expressed in terms of the orthogonal diagonalizg aximum ato, = o, to the log-likelinood(3). Thus, in the
ing transformationV, = (wy, , . . . Wg,) and of the diagonal  strong coupling limit u— ) free energy clustering is re-
matricess, of eigenvalues as covered.
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Applying the EM algorithm we use Eqgl7) and(18) for V. EXAMPLE
an iterative parameter update and assure the required or-

thogonality of the vectorsv,, hierarchically by Schmidt's F|ggres 1 '”“SVate the anneahng process and_ the corre-
method. Vectorw;, then converges to the eigenvector of sponding dimension-reduced descriptions for a simple two-

C. o with the largest eigenvalugy,, to one with the second dimensional data set’ composed oN=500 000 data points

largest, etc(for the mathematics of that type of diagonaliza- With @ maximal variancero. That data set is distributed ac-

tion of covariance matrices see, e.g., Raf)). cording to ana priori mixture density composed of eight
In contrast to the case of thE,, introduction of soft bivariate Gaussians; the weights of two of the data clusters

constraints for the weight®, is trivial. One may simply [marked by arrows in Fig.(®)] have been chosen 1.5 times

replace the EM equationd) by larger than those of the other clusters. For our model density
(1) we have choseK =10 components. The annealing is
P =(P(r|x,0))+\(1/K—-P,) (190 initialized at a high temperatures& 1.10,); as shown in

Fig. 1(a) all components are degenerate at the center of the

in order to keep the weights of the local distributions aP"yata distribution and the description represents that of a glo-

proximately balanced at K/ Like in free energy clustering

that balance ensures the stability of the algorithm. Note, tha{?aI plrlncollpatl compol_r:{e_nt a_n?lya.ﬂ. prelrltr;g the dtempbera-
the constraint derives from adding the log-likelihood ure leads to a splitting into thregrig. 1(b)] and, subse-

S .(1/K)InP,, that theP, are uniformly distributed, weighted duently, five componentgFig. 1(c)], which are still
by \ to the original log-likelihood (X]®). degenerate; that process uncovers the hierarchical distance

The annealing schedule, which accompanies the Epjelations among the clusters o_f the data set. _FinaIIy, for Fig.
parameter update according to E¢®, (17), (18), and(19)  1(d) the constraints on the variances and weights have been
in our algorithm, involves a reduction of the parameger removed at constant temperature; as a result, the substruc-
from |arge to small values and a subsequent or concomitaftires within the three small data clusters become resolved by
lifting of constraints by decreasing and \ to zero. The a lifting of the corresponding degeneracies whereas the co-
progress of optimization is monitored by the value ofherence of the extended clustérsarked by arrowsis re-
| (X®,0,u,\). A sequential, stochastic version of the algo-tained by preservation atwofold) degeneracy. The result-
rithm, in which data points are presented one by one foing model density represents the optimal solution with eight
parameter optimization, has also been implemented and theffective components of correct covariances and weights.
following simple example has actually been computed usindNote, that the thin lines in the figures illustrate the respective

that version. fuzzy partitionsP(r|x,®) of the data set.
[1] R. O. Duda and P. E. HarPattern Classification and Scene (1990.
Analysis(Wiley, New York, 1973. [11] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Scien@20, 671
[2] H. Grubmiller, Phys. Rev. 52, 2893(1995. (1983.
[3] J. Hertz, A. Krogh, and R. Palmentroduction to the Theory [12] S. Geman and D. Geman, IEEE Trans. Pattern. Anal. Mach.
of Neural ComputatiorfAddison-Wesley, New York, 1991 Intell. 6, 721 (1984.
[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, J. R. Statist. [13] C. Peterson and J. Anderson, Complex S¥s895 (1987).
Soc. Ser. B39, 1 (1977). [14] R. Durbin, R. Szeliski, and A. Yuille, Neural Compdit, 348
[5] Y. Linde, A. Buzo, and R. M. Gray, |IEEE Trans. Commun. (1989.
Technol.28, 84 (1980. [15] D. R. Dersch and P. Tavan, Proceedings of the IEEE Inter-
[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature national Conference on Neural Networks ICNN'@BEE, Pis-
(London 323 533(1986. cataway, 1994 pp. 698—703.
[7] C. v. d. Malsburg and D. J. Willshaw, Proc. Natl. Acad. Sci. [16] R. Durbin and D. Willshaw, Natur826, 689 (1987.
USA 74, 5176(1977. [17] A. L. Yuille, P. Stolorz, and J. Utans, Neural Comp6it.334
[8] T. Kohonen, Biol. Cybern43, 59 (1982. (1994.
[9] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, Cognitive [18] M. R. Garey, D. S. Johnson, and H. S. Witsenhausen, IEEE
Sci. 9, 147 (1985. Trans. Inf. Theory28, 255(1982.

[10] K. Rose, E. Gurewitz, and G. Fox, Phys. Rev. Lé®, 945  [19] J. Rubner and P. Tavan, Europhys. Léf}, 693 (1989.



